Оптимизация работы силовых трансформаторов (стр. 4 из 5). Оптимизация нагрузки в трансформаторах


Оптимизация нагрузки на трансформатор

08.02.2018

С того момента, как начали появляться первые автоматизированные системы проектирования и управления на основе компьютеров стали уделять все больше внимания задачам оптимизации управления системами электроснабжения.

Действующие на данный момент программные системы позволяют нам проверять:

Также программное обеспечение применяется при принятии решений на основании состояния и параметров режима электрической сети для сравнительного анализа разнообразных стратегий проектирования, монтажа, оптимизации и эксплуатации устройства.

Оптимальный коэффициент нагрузки трансформатора – это прежде всего отсутствие колебаний напряжений в первичной и вторичной сети.

К организационным мероприятиям для оптимизации нагрузки относятся:

Оптимизация систем электроснабжения требует выполнения мероприятий, которые могут быть связаны с инженерными расчетами, что является трудным процессом.

Чтобы найти оптимальную нагрузку трансформатора (SОПТ), которая бы отвечала наиболее возможному коэффициенту полезного действия, следует воспользоваться следующей формулой:

 

где SНОМ - номинальная мощность трансформатора, кВ·А;

ΔPХ - потери холостого хода, кВт;

ΔPК - потери короткого замыкания, кВт.

Взаимосвязь оптимальной нагрузки устройства и его номинальной мощности является оптимальным коэффициентом загрузки трансформатора (kЗ):

Используя данные формулы коэффициент загрузки трансформаторов получается в пределах 0,45-0,55. Это происходит из-за того, что трансформаторы выпускаются с соотношением потерь холостого хода и короткого замыкания в диапазоне 3,3-5,0. Чаще всего пользуются максимальными значениями нагрузки. По этим значениям определяется загрузка трансформаторов. Коэффициент загрузки на деле получается значительно ниже оптимального значения. Именно поэтому силовые трансформаторы, которые сейчас находятся в эксплуатации, имеют низкую загрузку и многие из них работают в неоптимальном режиме.

Определить потери мощности можно по формуле:

С помощью формулы, приведенной ниже, можно определить потери электроэнергии в трансформаторе. Потери зависят от времени включения устройства и формы графика электрических нагрузок.

ТГОД - это количество часов работы трансформатора в году, ч.

τ - время наибольших потерь. Оно определяется или по фактическому графику нагрузки или через справочное значение количества часов использования максимальной нагрузки, ч.

Минимальные потери энергии в устройстве за год будут в том случае, если потери энергии холостого хода и короткого замыкания будут равны.

Нагрузку силового трансформатора, которая учитывает показатели графика электрической нагрузки (ТГОД), и отвечающую минимуму потерь электроэнергии можно рассчитать по этой формуле:

В определенных может оказаться эффективным отключение части трансформаторов, работающих на общую нагрузку (SН).

Можно также определить экономически выгодную нагрузку (SЭК,ΔP) при работе, когда достигается максимально выгодная загрузка трансформаторов. При преобразовании нагрузки от нуля до SЭК,ΔP разумно будет использовать работу одного трансформатора. Работа двух устройств экономически выгодна при нагрузке свыше SЭК,Δ.

По приведенной ниже формуле можно рассчитать нагрузку SЭК,ΔP. При ней желательно отключать один из трансформаторов Данная нагрузка обусловлена равенством потерь мощности при работе одного и двух трансформаторов.

Обратите внимание, что отключение части трансформаторов по экономическим причинам ни в коем случае не должно отразиться на надежности электроснабжения потребителей. Поэтому отключенные трансформаторы необходимо сопровождать устройствами автоматического ввода резерва. Целесообразно будет автоматизировать операции отключения и включения силовых трансформаторов. Чтобы сократить число оперативных переключений частота вывода устройств в резерв не должна превышать 2-3 раз в сутки. Кроме того, загрузка трансформаторов, определяемая по формуле

Если брать во внимание показатели экономичности надежности, рассматриваемые подходы будут наиболее актуальными для подстанций, которые имеют сезонные колебания нагрузки.

Необходимо отметить также бытующую сейчас тенденцию перехода от стандартных программ оптимизации работы силовых трансформаторов и снижения потерь электрической энергии в сетях к бизнес-процессам управления потерями.

Решение подобных задач приведет к появлению новейших по оценке технической и экономической эффективности от принятия любого решения в инвестиционных проектах развития сетей и от применения новых технологий в передачи электроэнергии.

Использование подобных технологий и осуществление на практике перечисленных путей оптимизации работы сетей в перспективе принесут повышение эффективности нормирования потерь электрической энергии.

< ПредыдущаяСледующая >

elis-group.ru

Оптимизация работы силовых трансформаторов - часть 2

При авариях, например при выходе из работы одного из параллельно работающих трансформаторов и отсутствии резерва разрешается аварийная перегрузка оставшихся в работе трансформаторов независимо от длительности и значения предшествующей нагрузки и температуры охлаждающей среды. По сравнению с номинальным износом изоляции аварийные перегрузки повышают износ изоляции. Однако форсированный износ изоляции считается обоснованным, так как сокращение расчетного времени работы изоляции трансформатора наносит меньший ущерб, чем отключение потребителей [3].

За время аварийной перегрузки персонал обязан принять меры по замене поврежденного оборудования резервным, а по истечении указанного срока обязан разгрузить перегруженные трансформаторы до номинальной мощности отключением части потребителей. Величины и время аварийных перегрузок должны контролироваться. Неконтролируемые перегрузки могут привести к повреждению трансформаторов и развитию аварии [3].

Помимо систематических перегрузок в зимние месяцы допускаются 1% перегрузки трансформаторов на каждый процент недогрузки летом, но не более чем на 15%. Это правило применяется в том случае, когда максимум летнего графика нагрузки не превышал номинальной мощности трансформатора [3].

Трансформаторы допускают длительную работу при повышении подводимого напряжения при условии, что линейное напряжение на любой обмотке не превышает наибольшего рабочего напряжения, установленного государственным стандартом [3]:

Класс напряжения, кВ….. 3 6 10 15 20 35

Наибольшее рабочее

напряжение, кВ…………. 3,5 6,9 11,5 17,5 23 40,5

Класс напряжения, кВ…… 110 150 220 330 500 750

Наибольшее рабочее

Напряжение, кВ…………. 126 172 252 363 525 787.

Допускается повышение напряжения сверх номинального напряжения любого ответвления трансформатора и номинального напряжения любой обмотки, не имеющей ответвлений: 1) длительно, но не более чем на 5% при нагрузке не более номинальной; 2) длительно, но не более чем на 10% при нагрузке не более 0,25 от номинальной для всех трансформаторов и при нагрузке не более номинальной для трансформаторов, работающих в блоке с генераторами, а также для автотрансформаторов без ответвлений в нейтрали и работающих без регулировочных в нейтрали; 3) кратковременно (до 6 ч в сутки) на 10% при нагрузке не более номинальной [3].

2 Параллельная работа трансформаторов

Параллельная работа трансформаторов с нагрузками, пропорциональными их номинальным мощностям, возможна при равенстве первичных и вторичных напряжений (равенстве коэффициентов трансформации), равенстве напряжений короткого замыкания и тождественности групп соединения обмоток [3].

При параллельном соединении одноименные зажимы трансформаторов присоединяют к одному и тому же проводу сети (рисунок 1) [2].

Рисунок 1 – Включение трансформаторов на параллельную работу

Наилучшее использование установленной мощности трансформаторов может быть только при равенстве напряжений короткого замыкания. Однако в эксплуатации допускается включение на параллельную работу трансформаторов с отклонением напряжения короткого замыкания от их среднего значения, но не более чем на ± 10%. Это допущение связано с возможным отступлением (в пределах производственных допусков) при изготовлении трансформаторов в размерах обмоток, влияющих на напряжение короткого замыкания [3].

Не рекомендуется включение на параллельную работу трансформаторов с отношением номинальных мощностей более трех. Объясняется это тем, что даже при небольших реальных перегрузках трансформатор меньшей мощности может оказаться сильно перегруженным в процентном отношении и особенно в том случае, если он имеет меньшее напряжение короткого замыкания [3].

Параллельная работа трансформаторов, принадлежащих к разным группам соединений, невозможна по той причине, что между их вторичными обмотками возникает напряжение, обусловленное углом сдвига между векторами вторичных напряжений [3].

Применение нескольких параллельно включенных трансформаторов вместо одного трансформатора суммарной мощности необходимо для обеспечения бесперебойного энергоснабжения в случае аварии в каком-либо трансформаторе или отключения его для ремонта. Это также целесообразно при работе трансформаторной подстанции с переменным графиком нагрузки, например, когда мощность нагрузки значительно меняется в различные часы суток. В этом случае при уменьшении мощности нагрузки можно отключить один или несколько трансформаторов для того, чтобы нагрузка трансформаторов, оставшихся включенными, была близка к номинальной. В итоге эксплуатационные показатели работы трансформаторов (КПД и cosφ2) будут достаточно высокими [2].

Для того чтобы нагрузка между параллельно работающими трансформаторами распределялась пропорционально их номинальным мощностям, допускается параллельная работа двухобмоточных трансформаторов при следующих условиях [2]:

1 При одинаковом первичном напряжении вторичные напряжения должны быть равны. Другими словами, трансформаторы должны иметь одинаковые коэффициенты трансформации: kI = kII = kIII = … . При несоблюдении этого условия, даже в режиме холостого хода, между параллельно включенными трансформаторами возникает уравнительный ток, обусловленный разностью вторичных напряжений трансформаторов

[2] (2)

где ZkI и ZkII — внутренние сопротивления трансформаторов.

При включении на параллельную работу трансформаторов с различными коэффициентами трансформации напряжения на зажимах их вторичных обмоток будут различными. Разность вторичных напряжений вызывает прохождение уравнительных токов [3].

Уравнительные токи, загружая обмотки трансформаторов, увеличивают потери энергии и снижают суммарную мощность подстанции, поэтому прохождение их недопустимо. В связи с этим согласно ГОСТ 11677 — 85 у трансформаторов, включаемых на параллельную работу, коэффициенты трансформации не должны отличаться более чем на ± 5% [3].

При нагрузке трансформаторов уравнительный ток накладывается на нагрузочный. При этом трансформатор с более высоким вторичным напряжением холостого хода (с меньшим коэффициентом трансформации) оказывается перегруженным, а трансформатор равной мощности, но с большим коэффициентом трансформации — недогруженным. Так как перегрузка трансформаторов недопустима, то приходится снижать общую нагрузку. При значительной разнице коэффициентов трансформации нормальная работа трансформаторов становится практически невозможной. Однако ГОСТ допускает включение на параллельную работу трансформаторов с различными коэффициентами трансформации, если разница коэффициентов трансформации не превышает ±0,5% их среднего значения [2]

(3)

где

— среднее геометрическое значение коэффициентов трансформации.

2 Трансформаторы должны принадлежать к одной группе соединения. При несоблюдении этого условия вторичные линейные напряжения трансформаторов окажутся сдвинутыми по фазе относительно друг друга и в цепи трансформаторов появится разностное напряжение ∆U, под действием которого возникнет значительный уравнительный ток. Так, если включить на параллельную работу два трансформатора с одинаковыми коэффициентами трансформации, но один из них принадлежит к нулевой (Y/Y-0), а другой - к одиннадцатой (Y/∆- 11) группам соединения, то линейное напряжение U2I первого трансформатора будет больше линейного напряжения U2II второго трансформатора в

раз (). Кроме того, векторы этих напряжений окажутся сдвинутыми по фазе относительно друг друга на угол 30°. В этих условиях во вторичной цепи трансформаторов появится разностное напряжение ∆U. Если разностное напряжение ∆U = U2II. Появление такого разностного напряжения привело бы к возникновению во вторичной цепи трансформаторов уравнительного тока, в 15—20 раз превышающего номинальный ток нагрузки, т. е. возникла бы аварийная ситуация. Величина ∆U становится еще большей, если трансформаторы принадлежат нулевой и шестой группам соединения (∆U = 2U2) [2].

Группу соединения обмоток трансформатора выбирают из таких условий, чтобы они [7]:

- препятствовали возникновению высших гармоник в электрических сетях;

- выравнивали нагрузку между фазами первичной обмотки при несимметричной нагрузке вторичной обмотки;

- ограничивали сопротивление нулевой последовательности цепи короткого замыкания в случае питания четырехпроводных сетей.

Для выполнения первого и второго условий одну обмотку трансформаторов соединяют в звезду, а другую — в треугольник [7].

3 Трансформаторы должны иметь одинаковые напряжения короткого замыкания:

. Соблюдение этого условия необходимо для того, чтобы общая нагрузка распределялась между трансформаторами пропорционально их номинальным мощностям [2].

С некоторым приближением, пренебрегая токами холостого хода, можно параллельно включенные трансформаторы заменить их сопротивлениями короткого замыкания ZkI и Zkii [2].

mirznanii.com

Оптимизация работы силовых трансформаторов - часть 4

Наметилась тенденция к переходу от традиционных программ снижения потерь электроэнергии в электрических сетях к бизнес-процессам планирования и управления потерями [6].

Решение всех задач требует новых подходов к оценке технико-экономической эффективности принятия решений по инвестиционным проектам развития сетей и применению новых технологий передачи электроэнергии. Применение таких технологий и практическая реализация перечисленных путей совершенствования работы потребуют и дальнейшего повышения эффективности нормирования потерь [6].

4 Трансформаторные подстанции

На подстанциях всех напряжений, как правило, применяется не более двух трансформаторов по соображениям технической и экономической целесообразности. В большинстве случаев это обеспечивает надежное питание потребителей и в то же время дает возможность применять простейшие блочные схемы подстанций без сборных шин на первичном напряжении, что резко упрощает их конструктивные решения и уменьшает стоимость. Резервирование осуществляется при помощи складского и передвижного резерва [9].

Целесообразное число и мощность цеховых трансформаторов выбирают на основе технико-экономических расчетов (ТЭР) с учетом следующих основных факторов [7]:

- категории надежности электроснабжения потребителей;

- компенсации реактивных нагрузок на напряжении до 1 кВ;

- перегрузочной способности трансформаторов в нормальном и аварийном режимах;

- экономичных режимов работы трансформаторов в зависимости от графика нагрузки.

По количеству трансформаторов все подстанции подразделяют на однотрансформаторные, двухтрансформаторные, трехтрансформаторные. Однотрансформаторные подстанции применяют для питания потребителей III категории, а также части приемников II категории, допускающих перерыв питания на время замены трансформатора [8].

Для электроприемников I и II категорий по надежности электроснабжения, требующих резервирования питания, как правило, устанавливают двухтрансформаторные подстанции [8].

В последние годы разработана серия трехтрансформаторных подстанций, применение которых с симметричным распределением нагрузки в послеаварийном режиме на оставшиеся в работе два трансформатора позволяет увеличить загрузку каждого из трех трансформаторов в нормальном режиме [8].

Применение трехтрансформаторных подстанций при условии полного резервирования нагрузки обеспечивает 25% экономию трансформаторной мощности по сравнению с двухтрансформаторными подстанциями [8].

К преимуществам трехтрансформаторных подстанций относится также значительное снижение токов вводных и секционных выключателей в послеаварийных режимах. В то же время у трехтрансформаторных подстанций сборные шины РУ до 1 кВ конструктивно выполнить труднее вследствие необходимости соединений секций между собой, а схема АВР получается более сложной по сравнению с двухтрансформаторной подстанцией [8].

Трехтрансформаторные подстанции целесообразно применять для питания потребителей I и II категорий как при сосредоточенной, так и при распределенной нагрузке, питаемой по магистральным сетям [8].

С точки зрения замены поврежденных трансформаторов, а также удобства монтажа и эксплуатации, рекомендуется унифицировать единичные мощности трансформаторов, т.е. иметь ограниченное число типов трансформаторов [8].

Наиболее простым и дешевым решением является применение однотрансформаторных цеховых подстанций. На крупных предприятиях, имеющих складской резерв трансформаторов, их можно применять для питания электроприемников III и даже I категории [8].

Однотрансформаторные подстанции могут применяться и для питания электроприемников I категории, если мощность последних не превышает 15 - 20% мощности трансформатора и возможно резервирование подстанций на вторичном напряжении перемычками с АВР. Правила проектирования и общая тенденция повышения надежности электроснабжения ведет к установке двухтрансформаторных подстанций и для рассматриваемых случаев, т.е. к обеспечению всех потребителей как потребителей I категории. При установке однотрансформаторных подстанций они могут быть закольцованы на стороне 0,4 кВ (соединены магистралями или кабельными перемычками) [8].

Это обеспечивает сохранение электроснабжения при отключении любого трансформатора и возможность загрузки каждого трансформатора до номинального значения [8].

Двухтрансформаторные цеховые подстанции применяют при преобладании электроприемников I и II категорий и в энергоемких цехах [8].

Двухтрансформаторные цеховые подстанции применяются в тех случаях, когда большинство электроприемников относится к первой или второй категориям, которые не допускают перерыва в питании во время доставки и установки резервного трансформатора со склада, на что требуется не менее 3...4 ч. Двухтрансформаторные подстанции целесообразно применять также независимо от категории питаемых потребителей при неравномерном графике нагрузки, когда выгодно уменьшать число включенных трансформаторов при длительных снижениях нагрузки в течение суток или года [9].

Применение цеховых подстанций с числом трансформаторов более двух, как правило, экономически нецелесообразно. Более двух трансформаторов на одной цеховой подстанции применяется в следующих случаях [9]:

- при наличии крупных сосредоточенных нагрузок;

- при отсутствии места в цехе для рассредоточенного расположения подстанций по производственным условиям;

- при раздельных трансформаторах для «силы» и «света», если установка этих трансформаторов целесообразна на одной подстанции;

- при питании территориально совмещенных силовых нагрузок на различных напряжениях;

- при необходимости выделения питания нагрузок с резкими, часто повторяющимися толчками, например крупных сварочных аппаратов и т. п.

Число и мощность трансформаторов цеховых подстанций являются взаимосвязанными величинами, поскольку при заданной расчетной нагрузке цеха число трансформаторов будет меняться в зависимости от принятой единичной мощности подстанции [8].

Увеличение единичной мощности снижает общее количество устанавливаемых трансформаторов, но увеличивает протяженность сетей, а также затраты на коммутационную аппаратуру и другие, связанные с ростом токов КЗ. Практика проектирования и эксплуатации отдает предпочтение трансформаторам 1000 кВ·А (и в меньшей степени 630 кВ·А), считая эту мощность оптимальной [8].

5 Компенсация реактивной мощности

Экономию электроэнергии в силовых трансформаторах можно получить также, уменьшив мощность цеховых трансформаторов за счет компенсации реактивной мощности. Известно, что большинство электроприемников промышленных предприятий потребляет реактивную мощность (асинхронные двигатели, трансформаторы, дроссели и др.) [7].

Компенсация реактивной мощности означает снижение реактивной мощности, циркулирующей между источником тока и приемником, а, следовательно, снижение реактивного тока в генераторах и сетях. Снизить потребление реактивной мощности, т.е. уменьшить потери активной мощности, можно двумя способами: без применения и с применением компенсирующих устройств (КУ) [10].

Потребление реактивной мощности только на 30 % может покрываться синхронными генераторами электростанций, работающими при cosφ = 0,85. Важной задачей при эксплуатации систем цехового электроснабжения является уменьшение потребления реактивной мощности. Уменьшение потоков реактивной мощности приводит к существенному снижению потерь электроэнергии в системах электроснабжения. Компенсация реактивной мощности необходима в тех случаях, когда cosφ ниже нормативного cosφн = 0,95. При этом разгрузить цеховой трансформатор от реактивной мощности можно, установив компенсирующие устройства на НН цеховых ТП. Низкий cosφ может иметь место, например, при наличии большого числа асинхронных двигателей на напряжение 0,4 кВ [7].

Наиболее эффективный путь уменьшения реактивной мощности, потребляемой электроприводом, состоит в замене асинхронных двигателей синхронными там, где это возможно [7].

Другим эффективным путем уменьшения реактивной мощности является замена малозагруженных двигателей двигателями меньшей мощности [7].

При выборе средств КРМ следует учитывать, что наибольший экономических эффект достигается при их размещении вблизи электроприемников, потребляющих реактивную мощность [7].

Следует помнить, что в сетях 0,4 и 6 — 10 кВ следует в первую очередь для КРМ использовать работающие с cosφ ≥ 0,9 синхронные двигатели, а затем дополнительно, если необходимо, и батареи конденсаторов [7].

За счет КРМ по НН можно разгрузить цеховой трансформатор ТП и при росте нагрузки загрузить его дополнительно активной мощностью [9].

Пример. Полностью загруженный цеховой трансформатор имеет мощность Sт.ном = 1600 кВ·А, причем РТ = 1000 кВт, QT = 1250 квар

[10].

После установки батареи конденсаторов, реактивная мощность трансформатора снизилась до 500 квар, т.е. QKУ = 1250 — 500 = 750 квар. Полная нагрузка трансформатора составила

т.е. коэффициент загрузки трансформатора снизился с 1 до 0,7 (). Эксплуатация трансформатора с k3 = 0,7 соответствует более экономичному режиму его работы, так как потери активной мощности в нем меньше, чем с k3 = 1,0. При росте нагрузке этот трансформатор можно дополнительно нагрузить активной мощностью, равной [10]

mirznanii.com

Оптимизация работы силовых трансформаторов - Информация стр. 6

на вводах в здания снижают коммерческие потери в сетях на 1030 % и окупаются за срок не более 2 лет [6].

Основным и наиболее эффективным мероприятием по снижению технических потерь электроэнергии является компенсация реактивной мощности в электрических сетях и у потребителей, а также ряд других мероприятий, которые окупаются, а сроки, приемлемые для инвесторов программ снижения потерь. Чем меньше срок окупаемости, тем выше приоритет внедрения данного мероприятия [6].

Наиболее экономичной по ежегодным издержкам и потерям будет работа трансформатора в часы максимум работа с перегрузкой. В реальных условиях значение допустимой нагрузки выбирают в соответствии с графиком нагрузки и коэффициентом начальной нагрузки и в зависимости от температуры окружающей среды [5].

Значительную экономию электроэнергии в трансформаторах можно получить, использовав экономически целесообразный режим их работы. Суть этого режима состоит в том, что в зависимости от суммарной нагрузки в работе будет находиться определенное число одновременно работающих трансформаторов, обеспечивающих минимум потерь электроэнергии в этих трансформаторах (или минимум приведенных затрат) [7].

Наметилась тенденция к переходу от традиционных программ снижения потерь электроэнергии в электрических сетях к бизнес-процессам планирования и управления потерями [6].

Решение всех задач требует новых подходов к оценке технико-экономической эффективности принятия решений по инвестиционным проектам развития сетей и применению новых технологий передачи электроэнергии. Применение таких технологий и практическая реализация перечисленных путей совершенствования работы потребуют и дальнейшего повышения эффективности нормирования потерь [6].

4 Трансформаторные подстанции

На подстанциях всех напряжений, как правило, применяется не более двух трансформаторов по соображениям технической и экономической целесообразности. В большинстве случаев это обеспечивает надежное питание потребителей и в то же время дает возможность применять простейшие блочные схемы подстанций без сборных шин на первичном напряжении, что резко упрощает их конструктивные решения и уменьшает стоимость. Резервирование осуществляется при помощи складского и передвижного резерва [9].

Целесообразное число и мощность цеховых трансформаторов выбирают на основе технико-экономических расчетов (ТЭР) с учетом следующих основных факторов [7]:

- категории надежности электроснабжения потребителей;

- компенсации реактивных нагрузок на напряжении до 1 кВ;

- перегрузочной способности трансформаторов в нормальном и аварийном режимах;

- экономичных режимов работы трансформаторов в зависимости от графика нагрузки.

По количеству трансформаторов все подстанции подразделяют на однотрансформаторные, двухтрансформаторные, трехтрансформаторные. Однотрансформаторные подстанции применяют для питания потребителей III категории, а также части приемников II категории, допускающих перерыв питания на время замены трансформатора [8].

Для электроприемников I и II категорий по надежности электроснабжения, требующих резервирования питания, как правило, устанавливают двухтрансформаторные подстанции [8].

В последние годы разработана серия трехтрансформаторных подстанций, применение которых с симметричным распределением нагрузки в послеаварийном режиме на оставшиеся в работе два трансформатора позволяет увеличить загрузку каждого из трех трансформаторов в нормальном режиме [8].

Применение трехтрансформаторных подстанций при условии полного резервирования нагрузки обеспечивает 25% экономию трансформаторной мощности по сравнению с двухтрансформаторными подстанциями [8].

К преимуществам трехтрансформаторных подстанций относится также значительное снижение токов вводных и секционных выключателей в послеаварийных режимах. В то же время у трехтрансформаторных подстанций сборные шины РУ до 1 кВ конструктивно выполнить труднее вследствие необходимости соединений секций между собой, а схема АВР получается более сложной по сравнению с двухтрансформаторной подстанцией [8].

Трехтрансформаторные подстанции целесообразно применять для питания потребителей I и II категорий как при сосредоточенной, так и при распределенной нагрузке, питаемой по магистральным сетям [8].

С точки зрения замены поврежденных трансформаторов, а также удобства монтажа и эксплуатации, рекомендуется унифицировать единичные мощности трансформаторов, т.е. иметь ограниченное число типов трансформаторов [8].

Наиболее простым и дешевым решением является применение однотрансформаторных цеховых подстанций. На крупных предприятиях, имеющих складской резерв трансформаторов, их можно применять для питания электроприемников III и даже I категории [8].

Однотрансформаторные подстанции могут применяться и для питания электроприемников I категории, если мощность последних не превышает 15 - 20% мощности трансформатора и возможно резервирование подстанций на вторичном напряжении перемычками с АВР. Правила проектирования и общая тенденция повышения надежности электроснабжения ведет к установке двухтрансформаторных подстанций и для рассматриваемых случаев, т.е. к обеспечению всех потребителей как потребителей I категории. При установке однотрансформаторных подстанций они могут быть закольцованы на стороне 0,4 кВ (соединены магистралями или кабельными перемычками) [8].

Это обеспечивает сохранение эл

www.studsell.com

Оптимизация работы силовых трансформаторов - Информация стр. 7

ектроснабжения при отключении любого трансформатора и возможность загрузки каждого трансформатора до номинального значения [8].

Двухтрансформаторные цеховые подстанции применяют при преобладании электроприемников I и II категорий и в энергоемких цехах [8].

Двухтрансформаторные цеховые подстанции применяются в тех случаях, когда большинство электроприемников относится к первой или второй категориям, которые не допускают перерыва в питании во время доставки и установки резервного трансформатора со склада, на что требуется не менее 3...4 ч. Двухтрансформаторные подстанции целесообразно применять также независимо от категории питаемых потребителей при неравномерном графике нагрузки, когда выгодно уменьшать число включенных трансформаторов при длительных снижениях нагрузки в течение суток или года [9].

Применение цеховых подстанций с числом трансформаторов более двух, как правило, экономически нецелесообразно. Более двух трансформаторов на одной цеховой подстанции применяется в следующих случаях [9]:

- при наличии крупных сосредоточенных нагрузок;

- при отсутствии места в цехе для рассредоточенного расположения подстанций по производственным условиям;

- при раздельных трансформаторах для силы и света, если установка этих трансформаторов целесообразна на одной подстанции;

- при питании территориально совмещенных силовых нагрузок на различных напряжениях;

- при необходимости выделения питания нагрузок с резкими, часто повторяющимися толчками, например крупных сварочных аппаратов и т. п.

Число и мощность трансформаторов цеховых подстанций являются взаимосвязанными величинами, поскольку при заданной расчетной нагрузке цеха число трансформаторов будет меняться в зависимости от принятой единичной мощности подстанции [8].

Увеличение единичной мощности снижает общее количество устанавливаемых трансформаторов, но увеличивает протяженность сетей, а также затраты на коммутационную аппаратуру и другие, связанные с ростом токов КЗ. Практика проектирования и эксплуатации отдает предпочтение трансформаторам 1000 кВА (и в меньшей степени 630 кВА), считая эту мощность оптимальной [8].

5 Компенсация реактивной мощности

Экономию электроэнергии в силовых трансформаторах можно получить также, уменьшив мощность цеховых трансформаторов за счет компенсации реактивной мощности. Известно, что большинство электроприемников промышленных предприятий потребляет реактивную мощность (асинхронные двигатели, трансформаторы, дроссели и др.) [7].

Компенсация реактивной мощности означает снижение реактивной мощности, циркулирующей между источником тока и приемником, а, следовательно, снижение реактивного тока в генераторах и сетях. Снизить потребление реактивной мощности, т.е. уменьшить потери активной мощности, можно двумя способами: без применения и с применением компенсирующих устройств (КУ) [10].

Потребление реактивной мощности только на 30 % может покрываться синхронными генераторами электростанций, работающими при cosφ = 0,85. Важной задачей при эксплуатации систем цехового электроснабжения является уменьшение потребления реактивной мощности. Уменьшение потоков реактивной мощности приводит к существенному снижению потерь электроэнергии в системах электроснабжения. Компенсация реактивной мощности необходима в тех случаях, когда cosφ ниже нормативного cosφн = 0,95. При этом разгрузить цеховой трансформатор от реактивной мощности можно, установив компенсирующие устройства на НН цеховых ТП. Низкий cosφ может иметь место, например, при наличии большого числа асинхронных двигателей на напряжение 0,4 кВ [7].

Наиболее эффективный путь уменьшения реактивной мощности, потребляемой электроприводом, состоит в замене асинхронных двигателей синхронными там, где это возможно [7].

Другим эффективным путем уменьшения реактивной мощности является замена малозагруженных двигателей двигателями меньшей мощности [7].

При выборе средств КРМ следует учитывать, что наибольший экономических эффект достигается при их размещении вблизи электроприемников, потребляющих реактивную мощность [7].

Следует помнить, что в сетях 0,4 и 6 10 кВ следует в первую очередь для КРМ использовать работающие с cosφ ≥ 0,9 синхронные двигатели, а затем дополнительно, если необходимо, и батареи конденсаторов [7].

За счет КРМ по НН можно разгрузить цеховой трансформатор ТП и при росте нагрузки загрузить его дополнительно активной мощностью [9].

Пример. Полностью загруженный цеховой трансформатор имеет мощность Sт.ном = 1600 кВА, причем РТ = 1000 кВт, QT = 1250 квар [10].

После установки батареи конденсаторов, реактивная мощность трансформатора снизилась до 500 квар, т.е. QKУ = 1250 500 = 750 квар. Полная нагрузка трансформатора составила т.е. коэффициент загрузки трансформатора снизился с 1 до 0,7 (). Эксплуатация трансформатора с k3 = 0,7 соответствует более экономичному режиму его работы, так как потери активной мощности в нем меньше, чем с k3 = 1,0. При росте нагрузке этот трансформатор можно дополнительно нагрузить активной мощностью, равной [10]

Если бы КРМ не было, то для присоединения такой мощности потребовался еще один трансформатор мощностью 630 кВА [10].

Заключение

Трансформаторы являются основным оборудованием подстанций. В связи с тем, что производство электроэнергии происходит при генераторном напряжении 6...20 кВ, передача ее от электростанций на крупные районные подстанции осуществляется при напряжени

www.studsell.com

Силовая электроника журнал о MOSFET и IGBT, силовых трансформаторах и тиристорах, источниках питания, электроприводах

Диоды на основе SiC повышают эффективность солнечных энергосистем

Диоды на основе карбида кремния (SiC) достаточно быстро проникли на такой стремительно развивающийся рынок, как повышающие DC/DC-преобразователи и инверторы для солнечной энергетики, что особенно заметно в США и Европе. Так, SiC-диоды Шоттки с номинальными рабочими напряжениями 1200 В и 1700 В, которые выпускает основанное в 2015 г. и специализирующееся в области этой технологии подразделение Wolfspeed компании Cree, успешно используются в повышающих преобразователях для формирования шины DC-link вместо кремниевых PiN-аналогов и широко применяются в инверторах коммерчески доступных систем солнечной энергетики.

Plug & Play: применение силовых модулей с предварительно нанесенной термопастой

О применении теплопроводящих материалов написано много статей и руководств по эксплуатации, однако эта проблема продолжает привлекать внимание специалистов, работающих в сфере производства электронной техники. Большой интерес вызывает появление новых технологий и материалов с изменяемым фазовым состоянием (РСМ), а также возможность их нанесения предприятием — изготовителем модулей.

Проектирование и исследование понижающих импульсных преобразователей с обратным диодом и синхронным переключателем

Работа выполнена при финансовой поддержке РФФИ в рамках проекта № 15-48-02189-р_поволжье_а по теме «Исследование и оптимизация схем полупроводниковых преобразователей для солнечных электростанций»

Автоматизация измерений параметров блоков питания

Снижение издержек, повышение производительности труда и увеличение объема производства — важные цели любого предприятия. Автоматизация технологических процессов является одним из факторов, которые способствуют их достижению. Важный технологический процесс при производстве источников питания — проверка их электрических параметров. Компания «Силовая электроника» разработала, выпустила и протестировала опытный образец специального стенда, который обеспечивает автоматизированное проведение всех тестов в соответствии с требованиями технических условий.

Силовая электроника и сопромат

В условиях жесткой конкуренции производителю устройств силовой электроники недостаточно единожды завоевать популярность, зарекомендовав себя надежным и качественным поставщиком. Репутацию очень легко потерять из-за отказов выпускаемого оборудования. Как кажущиеся малозначимыми моменты технологических процессов производства могут повлиять на надежность выпускаемых изделий и как этого избежать, мы и рассмотрим в данной статье.

Стабилизация напряжения: обратная связь в DC/DC-преобразователях

О DC/DC-преобразователях пишут много и часто, однако обычно рассматривают конкретные решения или типы контроллеров для их построения, а за рамками статьи остается ряд важных моментов. Один из них — вопрос стабилизации выходного напряжения, причем не только при изменении уровня входного напряжения, но и при воздействии самых разнообразных факторов. За это отвечает обратная связь, так что без фундаментального знания особенностей ее построения и функционирования мы не сможем выбрать DC/DC-преобразователь, который будет отвечать требованиям нашего конкретного приложения и обеспечит его работу в заданных условиях эксплуатации. За основу данной публикации взяты отдельные главы из публикации в авторском переводе с комментариями и дополнениями автора статьи.

Полное содержание номера и анонсы статей

 

Над созданием журнала «Силовая электроника» работает более 100 авторов из всей России: научные сотрудники и специалисты ведущих вузов и НИИ, представители предприятий-поставщиков, дистрибьюторов и производителей компонентов и модулей силовой электроники. Многие статьи являются итогом практических изысканий и работ, проводимых авторами в различных направлениях силовой электроники.

 

«Силовая электроника» информирует читателей о последних исследованиях и разработках в области электроники, об основных направлениях и перспективах развития отечественного и мирового рынка силовой электроники. Тематически журнал охватывает все разделы силовой электроники, затрагивая не только традиционные темы, такие как компоненты силовой электроники, источники питания, электроприводы, схемотехническое моделирование, но и сферы применения элементной базы силовой электроники в системах индукционного нагрева, испытательном оборудовании, автомобильной электронике. Журнал освещает и такие пограничные сферы, как качество электроэнергии.

 

Серьезный и строгий подход к наполнению журнала, жесткий отбор качества материалов позволяет нам делать действительно информативное издание для профессионалов.

  1. Компоненты силовой электроники
  1. Силовые разъемы и клеммники
  2. Электроприводы
  1. Источники питания
  1. Системы охлаждения
  1. Сварочное оборудование 
  2.  Индукционный нагрев
  1. Автомобильная электроника
  1. Качество электроэнергии
  2. Электромагнитная совместимость
  3. Испытательное оборудование
  4. САПР

На сайте запущен новый сервис: параметрический поиск источников питания. В поиске можно задать сочетание 11-ти различных параметров источников питания (производитель, тип прибора, входное / выходное напряжение, количество выходов, температурный диапазон и т. д.), а так же поиск источника питания по диапазону мощностей и по прочности электрической изоляции. Вы можете подобрать необходимый источник питания из базы, содержащей на сегодняшний день порядка 6000 наименований 6-ти ведущих мировых производителей: Aimtec, C&D Technologies, Chinfa, FRIWO, MeanWell, Power-One. Дополнительно возможно сравнение результатов поиска, удобная сортировка результатов подбора, возможность просмотра и печати подробного описания выбранного продукта в формате pdf, информация о поставщиках. Помимо параметров, по которым ведется поиск, дополнительная информация об источнике питания – его подробное описание может быть предоставлено в формате pdf.

Добавление источников происходит из аккаунта фирмы, позволяющего получить расширенные возможности для фирм-участников системы: размещение новостной информации предприятия, дополнение базы источников питания и производителейв параметрическом поиске. База источников постоянно обновляется. Добро пожаловать в систему параметрического поиска!

power-e.ru

Оптимизация работы силовых трансформаторов

Оптимизация работы силовых трансформаторов

Введение

Силовые трансформаторы подразделяют на сухие, устанавливаемые в помещениях с пжаро- и взрывоопасной средой, масляные для наружной и внутренней установки в неопасной с точки зрения пожара и взрыва среде и трансформаторы с заполнением негорючим жидким диэлектриком (совтолом), устанавливаемые в закрытых помещениях повышенной пожароопасности [4].

Применение трансформаторов приводит к потерям энергии. Путем правильного выбора оборудования и рабочего напряжения можно сократить число необходимых трансформаторов и уменьшить потери энергии. Следует помнить, что если трансформаторы эксплуатируются потребителем, то он оплачивает соответствующие потери энергии. В целом лучше заказать оборудование с электродвигателями нужного напряжения, даже если это обойдется дороже, чем устанавливать специальные трансформаторы [1].

Потери энергии характерны для всех систем распределения электроэнергии главным образом благодаря потерям активной мощности и потерям в трансформаторах. Правильные проектирование и эксплуатация электрических систем позволяют не только свести к минимуму потери энергии, но и обеспечивают снижение затрат на электроэнергию. Потери энергии вызываются наличием включенных трансформаторов даже при отсутствии нагрузки. Неиспользуемое оборудование должно быть отключено[1].

Низкие коэффициенты мощности в дополнение к значительным потерям напряжения в сети и увеличению размеров штрафов, налагаемых энергоснабжающими компаниями, могут привести к росту потерь энергии и стоимости электроснабжения. Необходимо провести исследования электроэнергетической системы, а также изучить возможности использования конденсаторов для изменения значений коэффициента мощности. Для предприятий, неэффективно расходующих энергию, это позволит в некоторых случаях достичь экономии в размере 10—15% [1].

Коэффициент загрузки представляет собой еще один параметр, характеризующий способность предприятия эффективно использовать электроэнергию. Уменьшение нагрузки, позволяющее приблизить это отношение к единице без снижения уровня производства, приводит к повышению экономичности работы предприятия [1].

Снижение пиковых нагрузок. Большая часть второстепенных нагрузок может быть отключена в периоды пиков без перерыва производственного процесса [1].

С 2000 г. внедряется новая серия трансформаторов напряжением 35 кВ мощностью 1000... 6300 кВ·А. Масса трансформаторов новой серии и потери холостого хода снижены в среднем на 20% [4].

1 Допустимые перегрузки

В энергосистемах, а также на предприятиях в большинстве случаев применяют трехфазные трансформаторы. Группа из трех однофазных трансформаторов стоит дороже и требует приблизительно на 20% больше меди и стали, чем один трехфазный трансформатор той же мощности. Поэтому однофазные трансформаторы устанавливают лишь в тех случаях, когда по условиям транспортирования нельзя применять трехфазные, а также при отсутствии I трехфазных трансформаторов требуемой мощности [4].

Срок естественного износа трансформатора, работающего в номинальном режиме, составляет примерно 25 лет (ГОСТ 11677 — 85, п. 3.4). Срок определяется старением изоляции обмоток — бумаги, тканей, лаков и других материалов— под влиянием температур, превышающих допустимую; для данного класса изоляции. Процесс старения ведет к изменению исходных электрических, механических и химических свойств изоляционных материалов [3].

В процессе эксплуатации трансформаторов их нагрузка, а следовательно, и нагрев изменяются в значительных пределах. В период недогрузки трансформатор недоиспользуется. Поэтому при сохранении расчетного срока службы 25 лет разрешается перегружать трансформаторы, когда это требуется. На каждые 3% недогрузки допускается на такое же время перегрузка трансформатора на 1%; кроме того, на 1% недогрузки трансформатора летом разрешается 1% перегрузки в зимнее время. Это нормальная систематическая перегрузка, которая в общей сложности не должна превышать 30% для масляных и совтоловых и 20% для сухих трансформаторов [4].

По рекомендациям Международной энергетической комиссии (МЭК) для нормального суточного износа изоляции трансформатора температура наиболее нагретой точки обмоток не должна превышать + 98°С. Если температуру увеличить на 6°С, срок службы изоляции сократится почти вдвое. Здесь под температурой наиболее нагретой точки подразумевается температура наиболее нагретого внутреннего слоя обмотки верхней катушки трансформатора [3].

www.wikidocs.ru


Prostoy-Site | Все права защищены © 2018 | Карта сайта